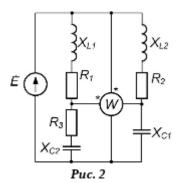

Шифр	
Задача №1	Баллы 15

Дана электрическая цепь постоянного тока (рис. 1), которая представляет собой бесконечное «покрывало», состоящее из треугольных ячеек. В стороне каждого «треугольника» размещен резистор с сопротивлением R=I Oм. К узлам 1 и 2 подключается источник тока величиной J=I A. Найдите величину разности потенциалов между узлами 1 и 2.


Puc. 1

Решение

Шифр	
Задача №2	Баллы 20

В схеме, изображенной на рис. 2, известны следующие параметры: E=200 B, $R_1=X_{L2}=20$ Ом, $R_2=X_{L1}=X_{C2}=40$ Ом, $R_3=30$ Ом.

При каком сопротивлении X_{CI} показание ваттметра будет равно нулю?

Шифр	
Задача №3	Баллы 25

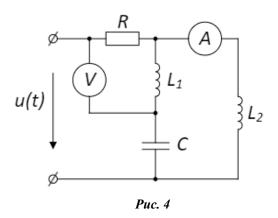
Линейное напряжение на вводе в трехэтажный дом трехфазной трехпроводной сети равно 380~B. Первый этаж подключается к фазе A, второй этаж — к фазе B, третий — к фазе C.

На первом этаже последовательно подключены 20 ламп номинальной мощностью по $50 \ Bm$ (рассчитаны на номинальное напряжение $220 \ B$).

На втором этаже подключены последовательно 10 ламп номинальной мощностью по 150~Bm (рассчитаны на номинальное напряжение 220~B).

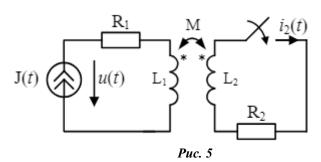
На третьем этаже подключены параллельно две группы по 12 последовательно включенных ламп номинальной мощностью по 100~Bm каждая (рассчитаны на номинальное напряжение 220~B).

Определить, на каком этаже лампы будут гореть ярче.


Шифр	
Задача №4	Баллы 10

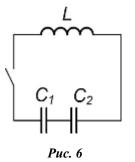
Напряжение на входных зажимах пассивного двухполюсника изменяется по закону:

 $u(t) = 50 + 120\sqrt{2}sin100t + 50\sqrt{2}sin200t$ B.


Параметры цепи: $R=10~{
m Om};$ $L_1=0.1~{
m \Gammah};$ $C=250~{
m mk\Phi}.$ На частоте $\omega=100~{
m pag/c}$ в цепи наблюдается резонанс токов.

Определить показания приборов электромагнитной системы.

Шифр	
Задача №5	Баллы 15


Воздушный трансформатор (рис. 5) питается от синусоидального источника тока. Параметры схемы: $R_1 = 10~Om,~R_2 = 5~Om,$ $L_1 = 0.2~\Gamma H,~L_2 = 0.05~\Gamma H,~M = 0.08~\Gamma H,$ $J(t) = 10\cdot sin(100\cdot t - 90^\circ)~A$. В момент времени t = 0 происходит замыкание ключа.

Найти законы изменения напряжения источника u(t) и тока вторичной цепи $i_2(t)$ после замыкания ключа.

Шифр	
Задача №6	Баллы 15

В схеме, изображенной на рисунке 6, происходит замыкание ключа. Параметры элементов схемы составляют: $C_1 = 10^{-7} \, \Phi$, $C_2 = 3 \cdot 10^{-7} \, \Phi$, $L = 3 \, \text{мГн}$. До замыкания ключа конденсатор C_1 был заряжен до напряжения $200 \, B$, а конденсатор C_2 до коммутации был полностью разряжен.

Определить максимальное значение тока после коммутации.

Шифр	
Задача №	